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Abstract- This paper presents a practical methodology 
of improving the efficiency of Genetic Algorithms 
through tuning the factors significantly affecting GA 
performance.  This methodology is based on the 
methods of statistical inference and has been 
successfully applied to both binary- and integer-
encoded Genetic Algorithms that search for good 
chemotherapeutic schedules. 

1 Introduction 

Genetic Algorithms (GAs) have been extensively 
studied in computer science and used in real-world 
applications to find one or a series of good (optimal) 
solutions from a vast search space [6].  The speed of 
exploring the solution space by GAs and the quality of the 
solutions found are affected to a great extent, and 
sometimes even determined, by the design of Genetic 
Algorithms – in particular, by the type of encoding, 
selection, genetic operators, and the values of their salient 
parameters.   

Although GAs have been applied to a wide range of 
problems in numerous areas of science and engineering, 
there is no generally accepted methodology of theoretical 
and experimental analysis of the influence of the 
operators and parameters (including the interactions 
thereof) involved in the design of Genetic Algorithms.  
The insight into which are the most relevant and 
influential factors in GA desing becomes even more 
important when Genetic Algorithms are applied to large 
or hard real-world problems [13].  When this happens, 
either the time necessary for GAs to find an acceptable 
solution significantly increases or the quality of final 
solutions decreases, which motivates the designer of 
Genetic Algorithms to fine tune GA factors. 

However, the stochastic nature of interactions within a 
GA population makes it difficult to determine the effect 
of each individual factor adjustment on the population 
dynamics.  When analysing the influence of these factors, 
most attention should be given to the ones that affect GA 
performance in a statistically significant way.  Then, it 
would be possible to avoid the neccessity for a detailed 
analysis of different GA configurations that lead to 
Genetic Algorithms with very similar behaviour patterns. 

Most commonly GA practitioners set the values of GA 
factors through a process of trial and error, or applying a 

case-based approach from related or similar problems in 
the literature.  There exist, however, a number of 
algorithmic schemes to improve efficiency of GAs [2]: 
• ad hoc GA factor tuning; 
• parallelisation and meta-GA optimization; 
• adaptation tuning and hybridisation.   

In our previous work [12], we developed a more 
rigorous methodology for tuning GA factors, which was 
validated and thoroughly examined by Czarn et al. in a 
more recent study [4].  This methodology is based on 
statistical analysis of the relationship between the factors 
and performance of Genetic Algorithms, which involves 
factorial experimental design, the ANalysis Of  the 
VARience (ANOVA), regression modelling, and response 
curve analysis.  The motivation for developing and 
applying this methodology is to enrich the designer of 
Genetic Algorithms with a reliable tool for selecting the 
values of controllable factors that significantly affect 
algorithms’ performance. 

In Section 2 the optimisation problem of cancer 
chemotherapy is described, which will be used as a 
benchmark for our methodology.  Section 3 gives the 
implementation details of our experiments.  The results of 
statistical tuning of GA factors are presented in Section 4.  
Section 5 concludes this paper with the discussion on the 
meaning of the results obtained and the directions of 
future work. 

2 Background 

One of the important merits of Genetic Algorithms is their 
ability to tackle real-world problems, which are very hard 
or even unsolvable by traditional optimisation techniques.  
One such problem is the composition of an optimal 
schedule for anti-cancer chemotherapy treatment.  This is 
a non-linear optimal control problem that is subject to 
contradictory constraints [8].  As can be seen from [1], 
[14] and [15], Genetic Algorithms favourably compare 
with other search heuristics in this problem domain.  
A detailed description of the problem is given in our 
previous paper [11]; here we only provide the details of 
how anti-cancer treatments can be represented and 
evaluated. 
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2.1 Chemotherapy treatments as GA chromosomes 
For multi-drug treatments the solutions to the problem of 
chemotherapy optimisation may be expressed as decision 

vectors djniijC ,1 ,,1 ),( ∈∈=c  of n  discrete doses for 

each of the  anti-cancer drugs used.  Using the Genetic 
Algorithms' terminology, the representation space  (a 
discretized version of the search space Ω ) can then be 
expressed as a Cartesian product: 
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of allele sets .  Each allele set uses a 4-bit 
representation scheme 
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so that each drug dose  takes an integer value in 

the range of 0 to 15 concentration units.  In general, with 
 treatment intervals and up to  concentration levels 

for  drugs, there are up to  individual elements.  
Henceforth we assume that 
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individuals, referred to as chromosomes. 
Thus, a chromosome  can be expressed as  I∈x
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and the mapping function  between the 
individual  and the decision vector  spaces can be 
defined as  
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where  represents the concentration unit for drug .  

This function symbolizes the decoding algorithm to 
derive the decision vector  from a chromosome 

jC∆ j

)(xm=c
x .  

If this vector violates any of the constraints imposed 
on cancer chemotherapy treatment, detailed in [11]; 
penalties are applied to the fitness function based on the 
following optimisation objective:  
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which corresponds to minimising the overall tumour 
burden during treatment [8]. 

If a decision vector does not break any of the 
constraints then we will call it feasible.  In the solution 
space  all feasible vectors comprise a feasible region, 
which will be the target of our search.  The efficiency of 
Genetic Algorithms applied to our problem is measured 

by the time necessary for GAs to find at least one feasible 
solution.  This time depends on a number of factors and is 
characterised by a random variable, the descriptions of 
which follow. 

Ω

2.2 Measure of GA efficiency 
In order to analyse the performance of Genetic 
Algorithms we introduce a random variable that 
characterises the efficiency of GAs. It has been found in 
[12] that a good measure of efficiency is the number of 
generations Ψ, which are required in order to reach the 
feasible region in the solution space.     

Due to the stochastic nature of GA search, Ψ is a 
random variable.  Our previous study has established that 
Ψ has the Weibull probability distribution, and the 
distribution of )log(Ψ  can be approximated by the 
Gaussian curve to a reasonable degree of accuracy [12].   
This enabled us to apply ANOVA for analysing the effect 
of tuning the GA factors. 

2.3 Factors affecting the efficiency  
Genetic Algorithms possess explorative features, 
characterised by the population size and the probability of 
mutation, and exploitative features, characterised by the 
type of selection used, by the probability of crossover and 
by the crossover operator itself.  However, the mere 
presence of these features does not guarantee the 
efficiency of GA search.  It is necessary to strike the right 
balance between explorative and exploitative features of 
Genetic Algorithms. 

These features in the present paper are specified by the 
following factors: 
• probability of crossover - 1φ ; 
• probability of mutation - 2φ ; 
• selection method - either tournament or linear ranked 

roulette wheel selection [10] - 3φ ; 
• crossover method - either weighted average  [2, 9] or 

standard two-point  [10] - 4φ ; 
• mutation method - either convex space or number 

creep [5] - 5φ ; 
• creep mutation step [5] - 6φ ; 
• fitness normalisation slope [5] - 7φ .  
• population size - 8φ . 

The variation of these factors will have different 
effects on the efficiency of Genetic Algorithms.  In the 
following section we demonstrate a methodology that 
enables us to identify the GA factors most significantly 
affecting the performance and to fine tune the values of 
such factors. 

3 Statistical Inference 

Having established the measure of GA efficiency and 
having specified the factors that most likely affect it, we 
can now attempt to find a mathematical formula that 
expresses this measure in terms of such factors: 



( ) lii ,1    ∈Ψ=Ψ φ  (6)

where  is the number of GA factors that significantly 
affect the performance.  Then the problem of GA 
efficiency improvement can be confined to the task of 
finding the factor values  that optimise the 
performance measure (6).   
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This task will be accomplished in three steps.  First of 
all, a screening experiment will be conducted reducing the 
number  of GA factors that need to be included into the 
model (6).  Only significant factors, variation of which 
noticeably (in a statistical sense) affects the performance, 
will remain in the model.   

l

After the screening experiment, a regression model of  
 in terms of significant factors will be obtained.  Using 

this model, standard calculus techniques can be applied in 
order to determine the optimal values of the significant 
GA factors. 

Ψ

However, before commencing the statistical analysis 
of GA performance, let us introduce a more advanced (in 
comparison with the one developed in [12]) 
representation of the solution space . Ω
3.1 Integer representation of cancer  chemotherapy 

treatments 
Traditionally, Genetic Algorithms employ fixed-length 
binary encoding such as that already shown to work for 
the cancer chemotherapy problem [11, 12].  Arguments 
for such an encoding are based on its allowance for a 
higher degree of parallelism and on the fact that each 
chromosome possesses the maximum number of schemata 
[9, 10].  Furthermore, it can be argued that binary 
encoding can represent any data, thus allowing the basic 
mutation and crossover operators to be used in a wide 
range of applications. Given its widespread use and 
established knowledge base, the authors chose binary 
encoding to initially represent solutions to the 
optimisation problem of cancer chemotherapy. 

However binary encoding is not the only way to 
represent such solutions.  One of the alternatives is to use 
a string of integers – in the cancer chemotherapy problem 
this results in each string of four bits being replaced by a 
decimal number of value 0-15.  This has multiple 
advantages: 
• It is more natural to represent numbers in this way, 

making the final implementation easier to understand 
and maintain [10]. 

• Keeping the numbers in their raw (integer) form 
enables us to preserve any domain-specific 
knowledge associated with the problem [5]. 

• Integer encoding – and indeed any real number 
encoding – opens up the possibility of new crossover 
and mutation operators more suited to the data.  
Rather than flipping random bits while undergoing 
mutation, values can be adjusted more predictably; 
similarly, more flexible mathematical operations may 
be used to implement crossover [9].  

Additionally, while Holland’s schema counting 
argument predicts that alternative encodings will yield 
poorer performance compared with their binary 
equivalents, empirical results have shown that the 
opposite is true in certain situations [2, 10].  It seems that 
correct choice of encoding is highly problem-specific and 
it is hard to predict whether one will be better than 
another.  

In the present study an attempt will be made to show 
that integer encoding does result in a better performance 
for the cancer chemotherapy problem compared to the 
original binary encoding.  This will be proved by first 
implementing and optimising an integer-based version of 
the original cancer chemotherapy GA, and then 
comparing its performance with that of the binary-
encoded GAs on the same optimisation problem. 

3.2 Screening experiment 
In order to ascertain how many of the GA factors 
specified in Section 2.3 significantly affect the 
performance, we will use a 28-2 fractional factorial design 
for a screening experiment.  Factorial designs allow the 
study of multiple factors in the same experiment and the 
assessment of the manner in which these factors interact 
[3].   

In the present context, the interaction between factors 
refers to the possibility of one factor producing different 
effect on the response variable when the value of another 
factor is changed.  Examining interactions is important 
because a significant interaction means that the effect of 
one GA factor cannot be considered independently of the 
others.   

Czarn et al rightly pointed out that different 
pseudorandom number generator seeds may contribute to 
significant differences in the value of the response 
variable Ψ.  Grouping experimental runs into 
homogeneous blocks, each of which starts with the same 
number generator seed, limits the cause of variation 
within blocks to the factors under study, thereby reducing 
the noise and sharpening the comparisons [4].   

This measure has been introduced in the following 
screening experiment; so was the workup procedure that 
attempts to balance an ANOVA design, which is also 
explained in [4]. 

ANOVA, as described in [3], essentially splits the total 
variations in the values of Ψ into variation contributed by 
the GA factors 8,1 , ∈iiφ , by their interactions, by 

blocking, and by error.  Error is expressed in terms of 
residuals, which are simply random deviations of the 
observed values from the expected values under the 
assumption that there is no deterministic effect.   

In order to ascertain that a GA factor iφ  has a 
statistically significant effect, we compare the variation 
contributed by the factor with the variation contributed by 
random error.  The ratio of these two contributions is 
referred to as an F -value; it enables us to determine the 
probability, called the -value, of observing such p F -



value under the hypothesis that iφ  does not significantly 
affects the performance.   

If the -value is equal or less than a chosen level of 
significance 

p
α  (usually 0.01 or 0.05), this would suggest 

that a particular GA factor has a significant effect upon 
the response variable Ψ.  

The results of the enhanced fractional factorial (FF) 
experiment are given in Table 1. 

TABLE 1.  28-2 FF Experiment 

Factor F-value p-value 

Constant  0.000 

1φ  -1.5 0.925 

2φ  -217.6 0.000 

3φ  20.3 0.212 

4φ  -7.3 0.650 

5φ  -15.4 0.341 

6φ  -68.9 0.000 

7φ  -28.9 0.080 

8φ  -174.6 0.000 
 
The analysis of the screening experiment is presented 

in Figure 1 where the significance of each GA factor is 
shown in the form of a histogram : 

 
Figure 1.  MINITAB analysis of the screening experiment 
 
As can be seen from Table 1, only three GA factors, 

viz. the probabilities of mutation ( 2φ ), creep mutation 

step ( 6φ ), and population size ( 8φ ) significantly affect 
the performance.  The effects of other factors are 
indistinguishable from the effect which might be caused 
by random errors of performance measurements; thus, the 
other factors will be excluded from further analysis.  The 
significant factors 2φ , 6φ , and 8φ , on the other hand, 
will be examined more thoroughly in the next section, 
where a regression model will be constructed in terms of 
these factors. 

3.3 Regression model 
When studying continuous factors, it is interesting to 

find conditions (values of the factors) that lead to a 
particular response, usually minimum or maximum. The 
responses of an experiment when considered as a function 
of the possible values of the factors form a response 
surface, which is usually expressed in the form of a 
regression model.  

The performance measure is obtained by repeating 
each GA run 30 times.  The same set of 30 random 
populations was generated for each factor setting.  Each 
population was allowed to run to a maximum of 500 
generations.    

The response surface experiment uses a central 
composite design [12], the results of which are given in 
Table 2.   

TABLE 2.  Response Surface Experiment 

Factor Coefficient p-value 
Constant ( C ) 1536.24 0.000 

2φ  -252.53 0.829 

6φ  -311.61 0.002 

8φ  -23.65 0.000 
2
2φ  427.01 0.756 
2
6φ  25.92 0.007 
2

8φ  0.13 0.000 

62φφ  4.76 0.972 

82φφ  -2.63 0.647 

86φφ  1.56 0.004 
 
Using the coefficients given in Table 2 we are able to 

build the following regression model: 

86
2
886

56.113.065.2361.311 φφφφφ ++−−=Ψ C (7)

 
Figure 2 depicts the relationship between the response 

variable and the first two significant factors (similar plots 
can be viewed for other significant factors and their 
interactions). 

 



 

Figure 2.  Ψ as a function of 2φ  and 6φ  

The regression model can be used to find the optimal 
values of the significant GA factors.  These values are 
obtained by differentiating (7) with respect to each factor 
in turn, setting each derivative equal to zero and solving 
the resulting system of equations. Table 3 gives the 
optimal value for each factor deemed to be significant by 
the screening experiment: 

 

TABLE 3.  Optimal values of GA factors 

Factor Optimal 
value 

Rounded 
value 

2φ  0.092 n/a 

6φ  3.54 4 

8φ  75.675 76 

4 Results 

In order to verify that the factors’ estimates obtained from 
the regression model really fine tune an integer-encoded 
GA, we will compare its performance with that of the best 
binary-encoded Genetic Algorithm found for this problem 
in our previous study [12].  

Two comparisons will be made: with respect to the 
number of generations necessary for finding a feasible 
solution and with respect to the maximum fitness found in 
a specified number of generations (NB.  The latter test 
ensures that the integer encoding still yields the same 
quality of solutions).  These comparisons were made by 
running the binary- and integer-encoded GAs 200 times 
with the same set of 200 random starting populations. 

Figure 3 and Table 4 summarise the results of these 
comparisons: 
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Figure 3.  Binary- vs. integer-encoded GAs in finding the 

feasible region in Ω  

 

Figure 3 shows a clear advantage in using the integer 
encoding.  Not only do a higher percentage of populations 
reach a feasible solution in the same time, but all 
populations find a feasible solution within 500 
generations – something the binary encoded GA was 
unable to achieve.   The steepness of the slope 
corresponding to the integer-encoded GA can have an 
important practical application – in situations when 
Genetic Algorithms have unsuccessful runs, a search can 
be safely restarted after much fewer generations in 
comparison with a binary-coded GA [12]. 

Table 4 below statistically proves that the difference in 
the mean values for the binary- and integer-coded GAs 
cannot be explained by random variations.   

 

TABLE 4.  t-test of GA efficiency  

Difference 
in means t-test p-value 

204.92 28.096 0.000 
 

Secondly, we compared the best solutions found by the 
two GAs within the imposed limit of 500 generations.  
The results are presented in Table 5 in the form of a t-test 
comparing the best solutions found by the competing 
GAs.   

 

TABLE 5.  t-test of the quality of GA solutions  

Difference 
in means t-test p-value 

1.328 10.574 0.000 
 
Again it is clear that the integer encoding yields a 

significant improvement over the binary equivalent; thus, 
we are not sacrificing the quality of final results for speed 
of operation (in fact, we are improving on it). 



5 Discussions 

Factor tuning is a traditional way of testing and 
comparing different values of GA factors before the real 
run of the algorithm. The main difficulties with factor 
tuning are [7]: 

• mistakes in factor settings can result in sub-
optimal algorithm’s performance or even in 
unsuccessful runs; 

• due to factor interaction, the tuning of these 
factors by trial and error is impractical for real 
problems; 

• optimal settings for one problem are not 
necessarily the best for a slightly different 
problem in the same domain. 

The developed methodology addresses these problems in 
situations when factor tuning is worth the effort, when the  
possible ranges of factors can be identified in advance, 
and when the response surface obtained during statistical 
experiments is consistent.   We believe that there are 
many practical applications that satisfy these requirements 
– cancer chemotherapy optimisation is one of them.   
Genetic Algorithms have already been proven to be useful 
in the optimisation of cancer chemotherapy treatment 
regimes [11, 12, 14, 15].  In this paper it has been shown 
that a substantial improvement of GA efficiency for the 
problem of cancer chemotherapy optimisation can be 
obtained by changing the encoding scheme from binary to 
integer.   The improvement has been achieved both in 
terms of speed and the quality of final solutions. 

Several interesting observations have been made over 
the course of this analysis; primarily these concern the 
difference between the factors important in fine tuning an 
integer-encoded GA and those of enhancing a binary-
encoded GA for the cancer chemotherapy problem. 

It would seem that crossover rate does not have a 
significant effect on an integer-encoded GA in this 
application.  Czarn et al also made this observation for 
some of the benchmark functions in their work [4].  One 
reason for this may be that in addition to its 
recombination role, crossover  also usually helps mutation 
to explore the search space by separating bits which are 
grouped together to form a single integer value.  When 
alleles are represented by integers, the points at which 
crossover can occur are fixed, preventing such 
collaboration between mutation and crossover and 
reducing the role played by crossover on the whole.  This 
may also explain why the integer encoding yields higher 
performance – crossover is recombining to produce good 
chromosomes without being able to destroy individual 
values within them by the described form of mutation.  
Incidentally, during initial construction of the integer-
encoded GA it was discovered that the lack of any 
crossover yields very poor performance, leading to the 
conclusion that some crossover is beneficial. 

Mutation, on the other hand, does have a significant 
effect on the performance.  Both the magnitude and 
frequency of mutations play significant roles in the GA’s 
execution speed, provided that their values strike the right 

balance between destructiveness (high mutation rate and 
large creep step) and lack of solution space coverage (low 
mutation rate and small creep step). 

What is also interesting is that the choice of operators 
used for both mutation and crossover does not seem to be 
important for the problem under investigation, which only 
partly aggrees with the fundings in [13]. More would 
need to be done to determine the reason for the apparent 
similarity in performance of quite distinct operators, 
especially in the case of mutation. 

The final point we would like to make is that even 
though finding a treatment schedule is not a hard real-
time task, the introduction of a more complex fitness 
function to include more drugs, treatment intervals, 
dosage levels or constraints is likely to increase the 
evaluation cost considerably.  Thus, it is important to 
improve on processing efficiency wherever possible and 
the use of the developed methodology of factor fine 
tuning together with integer encoding for potential GA 
solutions seems to be an effective approach to achieve 
this. 
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