
Hyper-parameter tuning to
improve existing software

 Alexander Brownlee, University of Stirling

2

Collaborators

3

Outline

• The software

• What to improve?

• A systematic approach:

– Statistical analysis

– Single-objective tuning

– Multi-objective tuning

• What about GI?

6

Software
• OPiuM – Java based simulator, developed in-house

at KLM

• Built on DSOL library, developed at TU Delft

7

Software
• Simulates aircraft movements given a schedule,

estimates possible delays

• One flight schedule:

– E.g. Europe, 3 months, ~17k flights

• All KLM flight schedules pass through Opium (soon
to include Air France too)

8

Software

9

What to improve?

• Opium software is part of a loop of improving
and testing schedules

• so, faster, and at least the same accuracy

10

Parameter tuning

• We were provided with real-world schedules
and results covering 2007-2010

• Starting point: Opium has 14 external
parameters

– These have been manually tuned over about 10
years, and are now mostly "don't touch"

– Tune these to improve simulation accuracy (fit to
historical data) and simulation run time

11

Wrapper

• Needed for any kind of automated improvement

12

A systematic approach

1. Statistical analysis of the parameters

2. Single objective tuning & model based analysis

3. Seeded multi-objective optimisation

Results:

high-performing configurations, with explanation

13

Stage 1: statistical analysis

1. Statistical Screening

– Design of experiments / fractional factorial

– Uses lower and upper bounds for each parameter

– Screens out insensitive parameters

2. Exploring the sensitive parameters

– Fine-grained exploration of each parameter

– Exhaustive: accuracy

– Response surface: time

14

Statistical Screening (Accuracy)

15

Optimal values: Accuracy
• Exhaustive search

– Search space of 112

• Matches default params acc=271.628)

• Importance, high to low:
– Swap Measure On
– Create Gamma
– Cancel Measure On (negligible?)
– Max Legs Cancel (negligible?)

MLC CMO CG SMO MSE

1 1 1 1 271.6

2 1 1 1 271.6

3 1 1 1 271.6

4 1 1 1 271.6

5 1 1 1 271.6

6 1 1 1 271.6

7 1 1 1 271.6

8 1 1 1 271.6

9 1 1 1 271.6

10 1 1 1 271.6

11 1 1 1 271.6

12 1 1 1 271.6

13 1 1 1 271.6

14 1 1 1 271.6

1...14 0 1 1 271.6

2...14 1 0 1 292.7

1 1 0 1 306.9

1...14 0 0 1 306.9

2...14 1 1 0 366.2

2...14 1 0 0 453.3

1 1 1 0 564.0

1...14 0 1 0 564.0

1 1 0 0 646.9

1...14 0 0 0 646.9

16

Time

• Same process for time, but second stage was a
response surface experiment (6 params, 520
solutions)

• Optimal config:

– Run time 476.5s (default was 1406.7)

– Accuracy (MSE) 426.988 (default was 271.628)

• So some potential for improvement

17

Stage 2: single-objective tuning

• Automatic Hyper-parameter Optimization

– Optimization with irace

– Optimization with SMAC

– "Optimal" configurations found

• Best was acc 241.268 vs 271.628

• Probably because of interactions

– Functional ANOVA (fANOVA) main/pairwise
interactions

18

fANOVA main/pairwise effects

Sum of fractions for main effects 68.91%

Sum of fractions for pairwise interaction effects 16.30%

54.25% due to main effect Swap_Measure_On

4.05% due to interaction Swap_Measure_On x Cancel_Measure_On

4.02% due to main effect Cancel_Measure_On

3.57% due to main effect CreateGamma

3.55% due to main effect Rounding_off_method

2.16% due to interaction Swap_Measure_On x Slack_Selection_BB3

2.13% due to main effect Slack_Selection_BB3

1.35% due to interaction Slack_Selection_BB3 x Cancel_Measure_On

1.28% due to interaction Swap_Measure_On x Rounding_off_method

0.84% due to interaction Swap_Measure_On x CreateGamma

0.82% due to interaction Slack_Selection_BB3 x CreateGamma

0.75% due to interaction CreateGamma x Cancel_Measure_On

0.63% due to main effect Ground_Factor_Out

0.55% due to interaction Slack_Selection_BB3 x Rounding_off_method

0.48% due to interaction Slack_Selection_BB3 x HSF_threshold

0.44% due to interaction Slack_Selection_BB3 x HSF_threshold_In

0.36% due to interaction Rounding_off_method x CreateGamma

0.33% due to main effect HSF_threshold

0.33% due to main effect HSF_threshold_In

0.33% due to interaction Swap_Measure_On x HSF_threshold_In

0.31% due to interaction Swap_Measure_On x Ground_Factor_Out

0.31% due to interaction Swap_Measure_On x HSF_threshold

0.25% due to interaction Rounding_off_method x Cancel_Measure_On

0.24% due to interaction HSF_threshold_In x Cancel_Measure_On

0.21% due to interaction HSF_threshold x Cancel_Measure_On

0.15% due to interaction Rounding_off_method x HSF_threshold_In

0.15% due to interaction HSF_threshold_In x CreateGamma

0.13% due to interaction Rounding_off_method x Ground_Factor_Out

0.12% due to interaction HSF_threshold x CreateGamma

0.10% due to interaction Slack_Selection_BB3 x Ground_Factor_Out

Integer marginal distributions

Continuous marginal distributions

240

245

250

255

260

265

1.0 1.5 2.0 2.5
Ground_Factor_Out

P
e

rf
o

rm
a

n
c
e

242.5

245.0

247.5

250.0

252.5

0.00 0.25 0.50 0.75 1.00
Max_Maintenance_Reduction

P
e

rf
o

rm
a

n
c
e

21

Stage 3: Multi-objective Optimisation

• Improvement in
both objectives!

• Highlighted params
correspond with
statistical analysis

22

Where next?
• The results are good, but can we do better?

• Possible deep parameter tuning
– Hundreds of parameters internally

– Relatively simple to identify and apply further
search

• Genetic improvement
– DSOL library is open source, currently developing

a project to explore GI on this

– Prime candidates are searching the space of Java
API classes such as containers, and lower-level
improvements to source code

23

Conclusions

• Start simple! Having written the wrapper,
parameter tuning is fairly easy to try

• The results were better than expected:
improving both speed and accuracy

• Value-added optimisation – we added deeper
analysis of the parameters that has been fed
back to developers

• Ready for deeper GI improvement at code level

24

Thanks for listening

sbr@cs.stir.ac.uk

Questions?

mailto:sbr@cs.stir.ac.uk
mailto:sbr@cs.stir.ac.uk
mailto:sbr@cs.stir.ac.uk

