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ABSTRACT

Markov Networks (also known as Markov Random Figlisve

been proposed as a new approach to probabilistidetimeg in

Estimation of Distribution Algorithms (EDAs). An HD

employing this approach called Distribution Estiimat Using

Markov Networks (DEUM) has been proposed and shosvn
work well on a variety of problems, using a unigfimess

modelling approach. Previously DEUM has
demonstrated on univariate and bivariate complegityblems.
Here we show that it can be extended to a diffiouldtivariate
problem and is capable of accurately modellingreefis function
and locating an optimum with a very small nhumberfiofction
evaluations.
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G.3 [Probability and statistics:
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Control
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General Terms
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Keywords
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1. INTRODUCTION

Estimation of Distribution Algorithms (EDAs) [6] is well-
established topic in the field of evolutionary aigfums. EDAs
develop the concept of evolution found in a GA, toaring the
principals of selection and variation. They differ replacing the
traditional genetic reproduction operators of cowss and
mutation with the construction and sampling of abmabilistic
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model. EDAs are typically categorised by the comipyeof their
probabilistic  model structure as univariate, bisgi or
multivariate [8].

DEUM is a framework for constructing EDAs using Mav
Networks to model the fitness function. The inittabory was
published in [1] and DEUM was first presented inl][1
Background on DEUM can be found in [12].

In [13] DEUM was extended to bivariate problemsingsthe
Ising Spin Glass problem [4] as a test case. Thmeraxents
described in that paper used an implementationE8Jl with a
fixed bivariate model structure. Here we proposeeatension
using a fixed multivariate structure; specificalthat of the
MAXSAT problem. The performance of the algorithm is
measured, using the hierarchical Bayesian Optimisat
Algorithm (hBOA) and WalkSAT algorithm presented [B] as
benchmarks. The ability of the algorithm to modithefss is
demonstrated by using it to predict the fitnessrafdomly
generated individuals.

The overall purpose of this paper is to demonstitaa¢ DEUM
can successfully construct an accurate model of fitmess
function and that this can be extended to highenpiexity
problems than in previous publications.

The remainder of this paper is structured as fdlo®ection 2
looks at the MAXSAT problem in more detail. Secti®moes on
to describe DEUM, the fitness modelling approacluses and
how it is sampled. Section 4 describes and presestdts of an
experiment comparing the performance of DEUM on N&¥T
with that of other algorithms. An analysis of thesults is then
presented. In Section 5 we describe an experimeith w
demonstrates the fitness modelling capability of UME with
results and analysis. Section 6 concludes the papat
summarises our intended future work on this topic.

2. MAXSAT AND EDAS

The Maximum Satisfiability or MAXSAT Problems arestribed
in [3]. A MAXSAT problem attempts to find a setedlues which
maximises the number of satisfied clauses of adfigeedicate
logic formula expressed in conjunctive normal fofdany real-
world problems can be mapped on to MAXSAT, inclydihe
well-known graph colouring problem. It is known b2 NP-
complete in its general form. The SATLIB resourgggrovides a
collection of a large number of sample MAXSAT prexois.



MAXSAT is particularly useful for experiments in ahelling high

order interactions as each instance of the prohises a known
predefined structure. It has already been useeiirchmarking an
EDA [9].

Encoding MAXSAT for evolutionary algorithms is a
straightforward task. The candidate solutions aitstrings in
which each bit encodes a predicate variable infoheula. An
individual's fitness is equal to the number of s@d clauses
given the predicate values in it.

3. BACKGROUND
3.1 Distribution Estimation Using Markov
Networks

DEUM uses a Markov Network to model fitness as aergy
distribution over the solution space. A Markov Netl is an
undirected graphical model, in contrast to thealee graphical
models such as Bayesian Networks used by many EDAs.

A Markov Network models a set of random variablesyades on
a graph, and interactions between those varialdesdges. It is
characterised by a property known as Markovianitlyich states
that the distribution of any node can be completelfned by the
values of its neighbouring nodes. The Markov Nekwvoray be
viewed as a set of cliques, a cligue simply beimy &ully
connected subgraph of the graphical model. Thimaalla joint
probability distribution for the Markov Network foe defined in
terms of the Gibbs distribution:

f _
ny(y) Zye-U(y)/T

U(x) is a sum otlique potential functionseach of which models
the neighbourhood relationship between variables one
particular clique on the graph. The summations ewver all
possible solutiony. T is a temperature coefficient, which remains
set to 1 in all of our current experiments. For soptoblems
slowly reducing this temperature could prevent @eme
convergence on a poor model.

e UIT

p(x) = 1)

As with many evolutionary algorithms DEUM modelsset of
individuals. Each individuak ={x,,x,,...,x,} is a particular set of

values which can be applied to the set
X ={X;, X,....X,} in @ problem — here these are the MAXSAT

predicate variables. Each individual is assigneditreess to
denote the quality of solution it represents.

In [1] it was shown that an equation for each iidiial in a
population may be derived from the joint probabiliistribution
shown in (1). This relates solution fitness to aergy function
calculated from the values taken by variables insea of
individuals:

—In(f(x) =U(x) (2)

Here,f(x) is the fitness of an individuad andU(x) is the energy
function derived from allelesU(x) fully specifies the joint
probability distribution, so can be regarded asrababilistic
model of the fithess function. Minimising(x) is equivalent to
maximisingf(x).

of variables

In early versions of DEUM, the Markov Network used

univariate structure, and there was only one clidole each

variable. Ising-DEUM [13] introduced extra cliqudsr the

bivariate interactions. Here we expand this furtteemcorporate
terms for interactions between up to 3 variablesiclv we call

trivariate terms. The sets of interactions areweridirectly from

the structure of the given MAXSAT problem instan€ais gives

us an energy function for each individual which tenexpressed
as:

where eacha is a parameter associated with a clique on the
Markov Network, ¢ is a constant representing thero-cliqueof
background energy in the Markov Network,js the number of
variables in each individual angrepresents the value of variable
i in the solutiorx. Here {-1,1} are used as the valuesxah place
of {0,1} to ensure arithmetical symmetry betweetues. The set
of a values completely model the distribution.

An example is helpful to illustrate this. A simpMAXSAT
problem has the set of predicates in (4).

(% 0%, Ux5) D% U%) D (X, U%,) (4)

The negations may be ignored when consideringdtationships
between predicate variables giving us the undidegephical

structure shown in Figure 1.

Figure 1: Relationships Between Predicate Variables

In the general energy function (5) for this problere have a
constant, a term for each of the predicate variakle term for
the bivariate interactions shown as edges on taphgand a term
for the trivariate interaction shown by the shadesh.

CHapy +dX% + 03X + X, + 01X %

U(x) =
T Q13X Xg + T X Xg + ApgXo Xy + 1% X0 X3

®)

An individualx ={0012} , with fithess f (x) = 2 would thus have
the energy function shown in (6).

—INQ) =c—a—a, + a3+ 0y + 01, — Qi3 = Aoy = Ay + A3 (6)

To determine the Markov Network parameters, a rando
population is formed in the normal manner for awletronary
algorithm. The energy function for each individual formed
resulting in a set of equations relatimg values, energy (derived
from fitness) and alleles. Singular value decontmmsi(SVD)
[10] is used to solve the system of simultaneousaggns and



determine the unknowmr values. The entire population is used
in this process — selective pressure comes fromrggne
minimisation in the model rather than traditionatlestion
operators. The model is then sampled to generateew
population for the next generation.

3.2 Gibbs Sampler

To generate a new population DEUM can employ a rarnab
sampling techniques. In [13] it was found that @ibbs sampler
performed well on more complex models, and thatthe
technique employed here. The Gibbs sampler repgatadples
marginal probabilities for individual variables. iF@ach variable
X the marginal probability of that variable takingethalue 1 is
given by:

1

p(x =1 = e 2T (6)

whereT is a temperature constant anglis an energy function for
all the cliques which contaix:

n n n
W =a; + X ay X +2 Y apXiX (7)
i=0 j=0k=0
j#i j#i k#i
The temperaturel falls over the run of the Gibbs sampler
according to a cooling scheme.

We have made methodological changes to the impletien of
the algorithm used in [13], both of which we haveurid
empirically to yield better results. Firstly, weow adopt the
exponential cooling scheme proposed by Kirkpatick5]. The
scheme starts with an initial temperattyyeand at generation g the
temperature is given by:

t, =kt;, (8)
wherek is a constant in the range k<< 1.

The second modification to the Bitwise Gibbs Sampigsed in
[13] is that bits are now sampled at random rathan in a raster
scan. The sampler runs until no further improvementthe
current individual or 10000 iterations have comgdet

The sampler runs as follows:
Repeat for each individuaf in the previous population:
1. Setg=0 and set initial value for
2. Repeat:
2.1
2.2
2.3

Setx™=x°
Pick a variabled at random

Compute marginal probability distribution for
x% according to (7)

2.4
2.5 Increasgy by 1
Until X™ = x° or g = 10000

Sample distribution to obtain new value f6r

Terminate with answe?

3.3 DEUM with Gibbs Sampler

Incorporating the Gibbs sampler into DEUM is aigtéforward
task, giving us the following algorithm:

1. Generate an initial populatio®®, of size M with uniform
distribution.

2. Calculate the Markov Network parameters by ngken
maximum likelihood estimation from the initial pdption.

3. Use Gibbs sampler to sample Markov Network, luMi
individuals or an optimal individual is generated

4. Terminate with the fittest solution found inste

Notice that there is only a single generation ts #igorithm. It
may be adapted to run for multiple generationsdpeating steps
2-3 using the population generated in 3 to buifte& model. We
have not done this here as we found that once tuehhas been
generated using an appropriately sized populatiepeatedly
sampling the model with different random starts| wibrmally
yield an optimum.

4. SOLVING THE MAXSAT PROBLEM
4.1 Aims

The aim of this experiment was to draw a comparisetween the
extended DEUM algorithm and existing algorithms legap to
MAXSAT. Chosen for comparison are a multivariate AAD
(hBOA) and a MAXSAT-specific algorithm (WalkSAT).

4.2 Method

The algorithm was run on the set of 3-CNF benchnpadblems
obtained from SATLIB [2]. The problem sizes were, 30, 75,
100, 125 and 150 (as used in [9]) On each sizeralflem, the
algorithm was repeated on 20 different instancdsctel at
random from the set held by SATLIB. Each instanested
belongs to the phase transition region, the poinwiich the
problems tip from generally solvable instances tnegally
unsolvable. This occurs where the number of claisesgual to
the number of predicates multiplied by 4.3. Eadtance tested is
from the set of those proven to be solvable.

In the first experiment single generation DEUM waa to find
an optimum. The problem is considerably more comfhan the
Ising problem described in [13]. Consequently, Bilebs sampler
must run for considerably longer and with a mudwsir cooling
rate than used on that problem: the cooling ratarpater was
0.995 for problems up to size 100 and 0.999 for loger
problems. The sampler ran for a maximum of 1008f&ftons, in
contrast to 500 iterations on the Ising probleme Population
size used in each case was the number of termkeiretergy
function multiplied by 1.1.

The number of fitness evaluations reported is tmaber used in
evaluating the initial population plus the numbesed in

evaluating the individuals generated by the Gibdomder. Also

reported is the number of internal probability cédtions used by
the Gibbs sampler.

4.3 Results

Table 1 shows the experimental results of the peidoce of
DEUM on differently sized instances of the MAXSAToplem.
The first column (PS) is the problem size. Nexthis number of



fitness evaluations (FE) required by the algorittonfind an
optimum, including evaluation of the initial poptitam and the
population produced by the Gibbs sampler, averayed the 20
runs. The corresponding standard deviation (FE{8Djhis data
is also included. Next is the average number oéitens (IT) of
the Gibbs sampler followed by its standard deviaf{f-SD) —
each iteration contains one marginal probabilitication. The
final column shows the success rate (SR) of findhgoptimum
over the 20 runs. The number of function evaluaimyquired to
find an optimum is also represented graphicalllyigure 2, where
the error bars represent one standard deviatiothénset of
results.

Table1: Performanceof DEUM on MAXSAT Problem

PS | FE FE-SD| IT IT-SD SR
20 |533 | 22 5.27x10 |6.87 x1d | 100
50 | 1626 | 82 1.58 x70|1.87 x16 | 100
75 | 2980 | 608 2.49 x10|1.85 x16 | 100
100 | 3667 | 507 3.40 x10{ 1.17 x4 | 100
125 | 5151 | 826 4.32 x10/1.99 x16 |65
150 | 6853 | 1510 | 5.25x10|1.51 x16 |70
10000 T T T T T T T
8000 |- -
g 6000
{
=
u%, 4000 T -
2000 |- . .
0 T 1 1 1 1 1 1
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Figure 2: Performance of DEUM on MAXSAT Problem
4.4 Analysis

4.4.1 Comparison with hBOA and WalkSAT

Previously hBOA had been tested on the same sptatiflems
and had been reported to perform comparably wghMAXSAT-
specific solver WalkSAT, when hBOA was used in arity with
the deterministic hillclimber GSAT. From Table 1 a&n see that
DEUM requires significantly fewer fithess evaluaiso than
reported for hBOA and without the use of a hybigmach. For
example, to solve instances of the problem at 4i@@ bits,
DEUM requires an average of 3500 evaluations. tbipares to
10° evaluations for hBOA + GSAT. DEUM also compares
favourably with WalkSAT, which was reported to requlct
evaluations. The decreasing success rate withrlgngdlems is
most likely caused by the Gibbs sampler, which &rtlp
dependent on the random start and is highly depgnole an
optimal cooling rate and run time.

4.4.2 Overhead

We previously reported that for Ising problem tlenputational
complexity of the algorithm was dominated by thélid sampler.
Here, again the Gibbs sampler
computational expense, requiring greater thaht&ations for all

but the smallest instances of MAXSAT. On this pesblhowever
the computational time required to calculate thekda Network
parameters dominates the run time of the algoriffime. system of
equations forms a matrix of considerable sizeaftypical 100 bit
MAXSAT problem there are 100 univariate terms, abud 100
bivariate terms and 430 trivariate terms. With aknown alpha
value for each term the system of equations has @680
unknowns. We have found by experimental analysat the
model is poor enough that it is extremely unlikéyyield an
optimum unless there are slightly more equatioas tthnknowns.
The number of equations is the same as the popnlaize, so in
the experiments here we used a population of thebeu of terms

multiplied by 1.1 — resulting in n approximating tvgxmﬁ .

SVD is known to have a computational complexitydgf®) for an
nxn matrix.

5. FITNESSPREDICTION
51 Aims

Given the algorithm overheads we have describedyatild

appear that our initial approach is unlikely tothe best use of
fitness modelling. In our previous publicationsge thdvantage
gained by DEUM over other EDAs has been its usditoéss

modelling. The aim of this experiment is to demcatst the
fithness modelling capability of the Markov Netwaak a basis for
further work.

5.2 FitnessModelling and Prediction

The unique advantage which is gained by usingdpisroach is
that rather than building a distribution of higHly individuals,
DEUM models the fitness function directly. In adllit to
sampling model to find an optimum we can also tide predict
the fitness of individuals.

Predicting the fithess of an individual is a simpéesk given a
previously constructed model. The bitstring is etembas before
so that for each, O is coded as -1 and 1 remains unchanged.
These values are substituted into the energy fam¢8) to give a
predicted energy(x) for the individual. The predicted fithess can
then be calculated thus:

f(x)=e*® (7)

Here, we use this as a measure of quality of fimaedels being
constructed. This concept also has a number of ilgess
applications; for problems where the fitness fumttis expensive
to compute the model could then be used in placealé to the

fitness function.

5.3 Method

The procedure for this experiment is identicaltte first part of
the previous experiment. A random population isegated and
used to build a model. Subsequently, a second rarmigpulation

equal in size to the starting population was geedraand

evaluated. The model was then used to predictitheskes for
this population, and the product moment correlatoefficient

[7] between the predicted and true sets of fitreess®es calculated.
We call this figure théitness prediction correlation.

5.4 Results

presents a significan The results in Table 2 are again sorted by MAXSAdhtem size

(PS) in the first column. The following two colummse the



average number of fitness evaluations (FE) and rapaaying
standard deviation (FE-SD) required in evaluatidg ffirst
population. That is, the number of evaluations neguto build
the model. The final two columns are the averagaess
prediction correlation (FPC) and the correspondstgndard
deviation (FPC-SD).

Correlation coefficient values run from -1 (perfesegative

correlation) to 1 (perfect positive correlationjalMes greater than
0.9 typically indicates a strong linear relatiomsHietween two

sets of data [7]. It can be seen from Table 2 thatcorrelation

between true fithess values and those predictedyube model is
considerably higher than this.

Table 2: Fitness Prediction Capability of Model

PS | FE FE-SD| FPC FPC-SD
20 | 284 |5 0.9970| 0.0011
50 |849 |11 0.9984| 0.0004
75 |1341| 10 0.9988 0.0002
100 | 1834 | 10 0.9992 0.0001
125 | 2336 | 12 0.9993 0.0001
150 | 2829 | 13 0.9994 0.0001

5.5 Analysis

The results show that the algorithm is able to eately predict
the fitnesses of completely random individuals.sTihdicates that
DEUM is able to closely model the fitness functiafter a
relatively small number of samples of it.

Firstly this reinforces our thought in section 4.4hat the poor
algorithm success rate was caused by the natutbeofGibbs
sampler. Given the accuracy of the fithess modedsngo
constructed it is feasible that by altering the glamg scheme to
run for considerably longer with a considerablywsto cooling
rate an optimum could be found in every case. Hewethe run
time of the sampling algorithm is likely to renddis approach
impractical.

This suggests a new approach to consider in futork. Fithess
prediction could be used to bias traditional genefierators such
as crossover and mutation. Some work has alreagly dene in
this area using different probabilistic models —eaaample is the
guided mutation operator described in [14].

6. CONCLUSIONS AND FUTURE WORK
This study has shown that the DEUM fitness modglipproach
can be extended to more complex problems thanitlaeidte and
univariate problems previously investigated. A MarkNetwork
can be built and sampled to produce an optimaViddal. It can
also be used to predict the fitness of individuastead of calling
the real fitness function. The experiments here atetnate that
this can be achieved with a small number of fumcgealuations
relative to other algorithms.

However, this is achieved at a high cost in terrhslgorithm
overhead. In earlier experiments, DEUM gained ani@ant
advantage over other algorithms through its usefiiofess
modelling. With increasing problem complexity thanmber of
terms in the energy function increases which leadan O(f)

increase in model build time. The time requiredthg sampler

also increases considerably with as problem contglexows.
Further investigation is required into the effe€tusing models
which do not perfectly match the problem structuvhich could
have a significantly smaller number of terms inithenergy
function. Limiting the model structure to a partaudegree of
complexity may be one way to achieve this. Indéleid, approach
has been taken in a number of algorithms emplofagesian
networks and shown to be successful [6]. This al¢lo require
some degree of structure learning or approximatton be
effective. We will need to investigate the tradé-bktween
maximum fitness modelling accuracy and efficient delo
construction.

While the model is still able to model fithess -eewto a less
accurate degree than that described in this papienay be used
to guide ftraditional genetic operators. Our immedia
consideration for future work is to investigate tee of hybrid
operators. This could well lead to similar or betmoblem
solving ability with reduced computational cost.
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