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ABSTRACT 
Markov Networks (also known as Markov Random Fields) have 
been proposed as a new approach to probabilistic modelling in 
Estimation of Distribution Algorithms (EDAs). An EDA 
employing this approach called Distribution Estimation Using 
Markov Networks (DEUM) has been proposed and shown to 
work well on a variety of problems, using a unique fitness 
modelling approach. Previously DEUM has only been 
demonstrated on univariate and bivariate complexity problems. 
Here we show that it can be extended to a difficult multivariate 
problem and is capable of accurately modelling a fitness function 
and locating an optimum with a very small number of function 
evaluations. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search; 

G.3 [Probability and statistics]: Probabilistic algorithms, 
Stochastic processes 

General Terms 
Algorithms, Performance, Theory 

Keywords 
Estimation of Distribution Algorithms, Evolutionary Algorithms, 
Probabilistic Modelling 

1. INTRODUCTION 
Estimation of Distribution Algorithms (EDAs) [6] is a well-
established topic in the field of evolutionary algorithms. EDAs 
develop the concept of evolution found in a GA, continuing the 
principals of selection and variation. They differ by replacing the 
traditional genetic reproduction operators of crossover and 
mutation with the construction and sampling of a probabilistic 

model. EDAs are typically categorised by the complexity of their 
probabilistic model structure as univariate, bivariate or 
multivariate [8]. 

DEUM is a framework for constructing EDAs using Markov 
Networks to model the fitness function. The initial theory was 
published in [1] and DEUM was first presented in [11]. 
Background on DEUM can be found in [12]. 

In [13] DEUM was extended to bivariate problems, using the 
Ising Spin Glass problem [4] as a test case. The experiments 
described in that paper used an implementation of DEUM with a 
fixed bivariate model structure. Here we propose an extension 
using a fixed multivariate structure; specifically that of the 
MAXSAT problem. The performance of the algorithm is 
measured, using the hierarchical Bayesian Optimisation 
Algorithm (hBOA) and WalkSAT algorithm presented in [9] as 
benchmarks. The ability of the algorithm to model fitness is 
demonstrated by using it to predict the fitness of randomly 
generated individuals. 

The overall purpose of this paper is to demonstrate that DEUM 
can successfully construct an accurate model of the fitness 
function and that this can be extended to higher complexity 
problems than in previous publications. 

The remainder of this paper is structured as follows. Section 2 
looks at the MAXSAT problem in more detail. Section 3 goes on 
to describe DEUM, the fitness modelling approach it uses and 
how it is sampled. Section 4 describes and presents results of an 
experiment comparing the performance of DEUM on MAXSAT 
with that of other algorithms. An analysis of the results is then 
presented. In Section 5 we describe an experiment with 
demonstrates the fitness modelling capability of DEUM with 
results and analysis. Section 6 concludes the paper and 
summarises our intended future work on this topic. 

2. MAXSAT AND EDAS 
The Maximum Satisfiability or MAXSAT Problems are described 
in [3]. A MAXSAT problem attempts to find a set of values which 
maximises the number of satisfied clauses of a fixed predicate 
logic formula expressed in conjunctive normal form. Many real-
world problems can be mapped on to MAXSAT, including the 
well-known graph colouring problem. It is known to be NP-
complete in its general form. The SATLIB resource [2] provides a 
collection of a large number of sample MAXSAT problems. 
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MAXSAT is particularly useful for experiments in modelling high 
order interactions as each instance of the problem uses a known 
predefined structure. It has already been used in benchmarking an 
EDA [9]. 

Encoding MAXSAT for evolutionary algorithms is a 
straightforward task. The candidate solutions are bitstrings in 
which each bit encodes a predicate variable in the formula. An 
individual’s fitness is equal to the number of satisfied clauses 
given the predicate values in it.  

3. BACKGROUND 
3.1 Distribution Estimation Using Markov 
Networks 
DEUM uses a Markov Network to model fitness as an energy 
distribution over the solution space. A Markov Network is an 
undirected graphical model, in contrast to the directed graphical 
models such as Bayesian Networks used by many EDAs. 

A Markov Network models a set of random variables as nodes on 
a graph, and interactions between those variables as edges. It is 
characterised by a property known as Markovianity, which states 
that the distribution of any node can be completely defined by the 
values of its neighbouring nodes. The Markov Network may be 
viewed as a set of cliques, a clique simply being any fully 
connected subgraph of the graphical model. This allows a joint 
probability distribution for the Markov Network to be defined in 
terms of the Gibbs distribution: 
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U(x) is a sum of clique potential functions, each of which models 
the neighbourhood relationship between variables in one 
particular clique on the graph. The summations are over all 
possible solutions y. T is a temperature coefficient, which remains 
set to 1 in all of our current experiments. For some problems 
slowly reducing this temperature could prevent premature 
convergence on a poor model. 

As with many evolutionary algorithms DEUM models a set of 
individuals. Each individual },...,,{ 21 nxxxx =  is a particular set of 

values which can be applied to the set of variables 
},...,,{ 21 nXXXX =  in a problem – here these are the MAXSAT 

predicate variables.  Each individual is assigned a fitness to 
denote the quality of solution it represents. 

In [1] it was shown that an equation for each individual in a 
population may be derived from the joint probability distribution 
shown in (1). This relates solution fitness to an energy function 
calculated from the values taken by variables in a set of 
individuals: 

)())(ln( xUxf =−  (2) 

Here, f(x) is the fitness of an individual x and U(x) is the energy 
function derived from alleles. U(x) fully specifies the joint 
probability distribution, so can be regarded as a probabilistic 
model of the fitness function. Minimising U(x) is equivalent to 
maximising f(x). 

In early versions of DEUM, the Markov Network used a 
univariate structure, and there was only one clique for each 
variable. Ising-DEUM [13] introduced extra cliques for the 
bivariate interactions. Here we expand this further to incorporate 
terms for interactions between up to 3 variables, which we call 
trivariate terms. The sets of interactions are derived directly from 
the structure of the given MAXSAT problem instance. This gives 
us an energy function for each individual which can be expressed 
as: 
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where each α  is a parameter associated with a clique on the 
Markov Network, c  is a constant representing the zero-clique of 
background energy in the Markov Network, n is the number of 
variables in each individual and xi represents the value of variable 
i in the solution x. Here {-1,1} are used as the values of xi in place 
of {0,1} to ensure arithmetical symmetry between values. The set 
of α  values completely model the distribution. 

An example is helpful to illustrate this. A simple MAXSAT 
problem has the set of predicates in (4). 

)()()( 2432321 xxxxxxx ∨∧∨∧∨∨ (4) 

The negations may be ignored when considering the relationships 
between predicate variables giving us the undirected graphical 
structure shown in Figure 1. 

 

Figure 1: Relationships Between Predicate Variables 

In the general energy function (5) for this problem, we have a 
constant, a term for each of the predicate variables xi, a term for 
the bivariate interactions shown as edges on the graph and a term 
for the trivariate interaction shown by the shaded area. 
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An individual }0011{=x , with fitness 2)( =xf would thus have 
the energy function shown in (6). 

123242313124321)2ln( ααααααααα +−−−+++−−=− c  (6) 

To determine the Markov Network parameters, a random 
population is formed in the normal manner for an evolutionary 
algorithm. The energy function for each individual is formed 
resulting in a set of equations relating α  values, energy (derived 
from fitness) and alleles. Singular value decomposition (SVD) 
[10] is used to solve the system of simultaneous equations and 

x1 x2 

x3 x4 



determine the unknown α  values. The entire population is used 
in this process – selective pressure comes from energy 
minimisation in the model rather than traditional selection 
operators. The model is then sampled to generate a new 
population for the next generation. 

3.2 Gibbs Sampler 
To generate a new population DEUM can employ a number of 
sampling techniques. In [13] it was found that the Gibbs sampler 
performed well on more complex models, and that is the 
technique employed here. The Gibbs sampler repeatedly samples 
marginal probabilities for individual variables. For each variable 
xi the marginal probability of that variable taking the value 1 is 
given by: 
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where T is a temperature constant and Wi is an energy function for 
all the cliques which contain xi: 
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The temperature T falls over the run of the Gibbs sampler 
according to a cooling scheme. 

We have made methodological changes to the implementation of 
the algorithm used in [13], both of which we have found 
empirically to yield better results.  Firstly, we now adopt the 
exponential cooling scheme proposed by Kirkpatrick in [5]. The 
scheme starts with an initial temperature to, and at generation g the 
temperature is given by: 

1−= gg ktt  (8) 

where k is a constant in the range 0 < k  < 1.  

The second modification to the Bitwise Gibbs Sampler used in 
[13] is that bits are now sampled at random rather than in a raster 
scan. The sampler runs until no further improvement to the 
current individual or 10000 iterations have completed. 

The sampler runs as follows: 

Repeat for each individual xo in the previous population: 

1. Set g = 0 and set initial value for T 

2. Repeat: 

2.1 Set xtmp = xo 

2.2 Pick a variable xo
i at random 

2.3 Compute marginal probability distribution for 
xo

i according to (7) 

2.4 Sample distribution to obtain new value for xo
i 

2.5 Increase g by 1 

Until xtmp = xo or g = 10000 

Terminate with answer xo 

3.3 DEUM with Gibbs Sampler 
Incorporating the Gibbs sampler into DEUM is a straightforward 
task, giving us the following algorithm: 

1. Generate an initial population, P, of size M with uniform 
distribution. 

2. Calculate the Markov Network parameters by making a 
maximum likelihood estimation from the initial population. 

3. Use Gibbs sampler to sample Markov Network, until M 
individuals or an optimal individual is generated 

4. Terminate with the fittest solution found in step 4. 

Notice that there is only a single generation to this algorithm. It 
may be adapted to run for multiple generations by repeating steps 
2-3 using the population generated in 3 to build a new model. We 
have not done this here as we found that once the model has been 
generated using an appropriately sized population, repeatedly 
sampling the model with different random starts will normally 
yield an optimum. 

4. SOLVING THE MAXSAT PROBLEM 
4.1 Aims 
The aim of this experiment was to draw a comparison between the 
extended DEUM algorithm and existing algorithms applied to 
MAXSAT. Chosen for comparison are a multivariate EDA 
(hBOA) and a MAXSAT-specific algorithm (WalkSAT). 

4.2 Method 
The algorithm was run on the set of 3-CNF benchmark problems 
obtained from SATLIB [2]. The problem sizes were 20, 50, 75, 
100, 125 and 150 (as used in [9]) On each size of problem, the 
algorithm was repeated on 20 different instances selected at 
random from the set held by SATLIB. Each instance tested 
belongs to the phase transition region, the point at which the 
problems tip from generally solvable instances to generally 
unsolvable. This occurs where the number of clauses is equal to 
the number of predicates multiplied by 4.3. Each instance tested is 
from the set of those proven to be solvable.  

In the first experiment single generation DEUM was run to find 
an optimum. The problem is considerably more complex than the 
Ising problem described in [13]. Consequently, the Gibbs sampler 
must run for considerably longer and with a much slower cooling 
rate than used on that problem: the cooling rate parameter was 
0.995 for problems up to size 100 and 0.999 for the larger 
problems. The sampler ran for a maximum of 10000 iterations, in 
contrast to 500 iterations on the Ising problem. The population 
size used in each case was the number of terms in the energy 
function multiplied by 1.1. 

The number of fitness evaluations reported is the number used in 
evaluating the initial population plus the number used in 
evaluating the individuals generated by the Gibbs sampler. Also 
reported is the number of internal probability calculations used by 
the Gibbs sampler. 

4.3 Results 
Table 1 shows the experimental results of the performance of 
DEUM on differently sized instances of the MAXSAT problem. 
The first column (PS) is the problem size. Next is the number of 



fitness evaluations (FE) required by the algorithm to find an 
optimum, including evaluation of the initial population and the 
population produced by the Gibbs sampler, averaged over the 20 
runs. The corresponding standard deviation (FE-SD) for this data 
is also included. Next is the average number of iterations (IT) of 
the Gibbs sampler followed by its standard deviation (IT-SD) – 
each iteration contains one marginal probability calculation. The 
final column shows the success rate (SR) of finding the optimum 
over the 20 runs. The number of function evaluations required to 
find an optimum is also represented graphically in Figure 2, where 
the error bars represent one standard deviation in the set of 
results. 

Table 1:  Performance of DEUM on MAXSAT Problem 

PS FE FE-SD IT IT-SD SR 

20 533 22 5.27x106 6.87 x104 100 

50 1626 82 1.58 x107 1.87 x105 100 

75 2980 608 2.49 x107 1.85 x105 100 

100 3667 507 3.40 x107 1.17 x105 100 

125 5151 826 4.32 x107 1.99 x105 65 

150 6853 1510 5.25 x107 1.51 x105 70 
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Figure 2:  Performance of DEUM on MAXSAT Problem 

4.4 Analysis 
4.4.1 Comparison with hBOA and WalkSAT 

Previously hBOA had been tested on the same set of problems 
and had been reported to perform comparably with the MAXSAT-
specific solver WalkSAT, when hBOA was used in a hybrid with 
the deterministic hillclimber GSAT. From Table 1 we can see that 
DEUM requires significantly fewer fitness evaluations than 
reported for hBOA and without the use of a hybrid approach. For 
example, to solve instances of the problem at size 100 bits, 
DEUM requires an average of 3500 evaluations. This compares to 
105 evaluations for hBOA + GSAT. DEUM also compares 
favourably with WalkSAT, which was reported to require 104 
evaluations. The decreasing success rate with larger problems is 
most likely caused by the Gibbs sampler, which is partly 
dependent on the random start and is highly dependent on an 
optimal cooling rate and run time. 

4.4.2 Overhead 

We previously reported that for Ising problem the computational 
complexity of the algorithm was dominated by the Gibbs sampler. 
Here, again the Gibbs sampler presents a significant 
computational expense, requiring greater than 107 iterations for all 

but the smallest instances of MAXSAT. On this problem however 
the computational time required to calculate the Markov Network 
parameters dominates the run time of the algorithm. The system of 
equations forms a matrix of considerable size: for a typical 100 bit 
MAXSAT problem there are 100 univariate terms, around 1100 
bivariate terms and 430 trivariate terms. With an unknown alpha 
value for each term the system of equations has over 1600 
unknowns. We have found by experimental analysis that the 
model is poor enough that it is extremely unlikely to yield an 
optimum unless there are slightly more equations than unknowns. 
The number of equations is the same as the population size, so in 
the experiments here we used a population of the number of terms 

multiplied by 1.1 – resulting in n approximating to 6103× . 
SVD is known to have a computational complexity of O(n3) for an 
nxn matrix. 

5. FITNESS PREDICTION 
5.1 Aims 
Given the algorithm overheads we have described, it would 
appear that our initial approach is unlikely to be the best use of 
fitness modelling. In our previous publications, the advantage 
gained by DEUM over other EDAs has been its use of fitness 
modelling. The aim of this experiment is to demonstrate the 
fitness modelling capability of the Markov Network as a basis for 
further work. 

5.2 Fitness Modelling and Prediction 
The unique advantage which is gained by using this approach is 
that rather than building a distribution of highly fit individuals, 
DEUM models the fitness function directly. In addition to 
sampling model to find an optimum we can also use it to predict 
the fitness of individuals. 

Predicting the fitness of an individual is a simple task given a 
previously constructed model. The bitstring is encoded as before 
so that for each xi, 0 is coded as -1 and 1 remains unchanged. 
These values are substituted into the energy function (3) to give a 
predicted energy U(x) for the individual. The predicted fitness can 
then be calculated thus: 

)()( xUexf −=  (7) 

Here, we use this as a measure of quality of fitness models being 
constructed. This concept also has a number of possible 
applications; for problems where the fitness function is expensive 
to compute the model could then be used in place of calls to the 
fitness function.  

5.3 Method 
The procedure for this experiment is identical to the first part of 
the previous experiment. A random population is generated and 
used to build a model. Subsequently, a second random population 
equal in size to the starting population was generated and 
evaluated. The model was then used to predict the fitnesses for 
this population, and the product moment correlation coefficient 
[7] between the predicted and true sets of fitnesses was calculated. 
We call this figure the fitness prediction correlation. 

5.4 Results 
The results in Table 2 are again sorted by MAXSAT problem size 
(PS) in the first column. The following two columns are the 



average number of fitness evaluations (FE) and accompanying 
standard deviation (FE-SD) required in evaluating the first 
population. That is, the number of evaluations required to build 
the model. The final two columns are the average fitness 
prediction correlation (FPC) and the corresponding standard 
deviation (FPC-SD). 

Correlation coefficient values run from -1 (perfect negative 
correlation) to 1 (perfect positive correlation). Values greater than 
0.9 typically indicates a strong linear relationship between two 
sets of data [7]. It can be seen from Table 2 that the correlation 
between true fitness values and those predicted using the model is 
considerably higher than this. 

Table 2: Fitness Prediction Capability of Model 

PS FE FE-SD FPC FPC-SD 

20 284 5 0.9970 0.0011 

50 849 11 0.9984 0.0004 

75 1341 10 0.9988 0.0002 

100 1834 10 0.9992 0.0001 

125 2336 12 0.9993 0.0001 

150 2829 13 0.9994 0.0001 

 

5.5 Analysis 
The results show that the algorithm is able to accurately predict 
the fitnesses of completely random individuals. This indicates that 
DEUM is able to closely model the fitness function after a 
relatively small number of samples of it. 

Firstly this reinforces our thought in section 4.4.1 that the poor 
algorithm success rate was caused by the nature of the Gibbs 
sampler. Given the accuracy of the fitness models being 
constructed it is feasible that by altering the sampling scheme to 
run for considerably longer with a considerably slower cooling 
rate an optimum could be found in every case. However, the run 
time of the sampling algorithm is likely to render this approach 
impractical. 

This suggests a new approach to consider in future work. Fitness 
prediction could be used to bias traditional genetic operators such 
as crossover and mutation. Some work has already been done in 
this area using different probabilistic models – an example is the 
guided mutation operator described in [14]. 

6. CONCLUSIONS AND FUTURE WORK 
This study has shown that the DEUM fitness modelling approach 
can be extended to more complex problems than the bivariate and 
univariate problems previously investigated. A Markov Network 
can be built and sampled to produce an optimal individual. It can 
also be used to predict the fitness of individuals instead of calling 
the real fitness function. The experiments here demonstrate that 
this can be achieved with a small number of function evaluations 
relative to other algorithms. 

However, this is achieved at a high cost in terms of algorithm 
overhead. In earlier experiments, DEUM gained a significant 
advantage over other algorithms through its use of fitness 
modelling. With increasing problem complexity the number of 
terms in the energy function increases which leads to an O(n3) 
increase in model build time. The time required by the sampler 

also increases considerably with as problem complexity grows. 
Further investigation is required into the effect of using models 
which do not perfectly match the problem structure, which could 
have a significantly smaller number of terms in their energy 
function. Limiting the model structure to a particular degree of 
complexity may be one way to achieve this. Indeed, this approach 
has been taken in a number of algorithms employing Bayesian 
networks and shown to be successful [6]. This will also require 
some degree of structure learning or approximation to be 
effective. We will need to investigate the trade-off between 
maximum fitness modelling accuracy and efficient model 
construction. 

While the model is still able to model fitness – even to a less 
accurate degree than that described in this paper – it may be used 
to guide traditional genetic operators. Our immediate 
consideration for future work is to investigate the use of hybrid 
operators. This could well lead to similar or better problem 
solving ability with reduced computational cost. 
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