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Problem statement 
• Metaheuristics need some notion of “fitness” 

 

 

 

 

 

• Two purposes: 
1. Measure quality (wrt the objectives+constraints) 

2. Guide the search 

• (1) is not necessarily suitable for (2)… 

Metaheuristic Fitness function 

Solutions 

“Fitness” 

We’re done – how did we do? (objectives) 



Problem statement 

The true fitness function might: 

1. Be costly 

2. Be noisy 

3. Not have a useful search gradient 



Solution 

• Surrogate fitness function in place of “true” FF 

– Still need to refer to “true” fitness occasionally 

• a.k.a. meta-model, proxy, fitness model or 
approximation 

– typically one of the above for costly problems, but 
less so for noisy problems or reshaping landscape 

• Two types: 

– Static 

– Dynamic 



Solution 

• Static surrogates 

– part of problem definition 

– can include domain knowledge 

– typically guides search towards partial solutions 

• Constraint relaxation, multi-objective weights 

– might be classed as surrogates 

• Often used already! 

– We don’t usually directly search the real world 

 

 



Solution 

• Dynamic surrogates 
– Regression or machine learning: polynomials, 

Kriging, artificial neural networks, interpolations 

– Fitness inheritance 

• Trained using samples of “true” fitness 

• Updated or replaced over time 
– bridge / handle / body pattern 

• Ensembles combine strengths of many 
– “composite” pattern 



Consequences 

• Search landscape altered 

• Approximation errors 

– Must make reference to objective function 

– e.g. Surrogate filters new solutions before full 
evaluation, or switch between surrogate & true 

• Can offer speed up – but balance with overhead 

• Surrogate explicitly models fitness: mine it to 
support decision making 



Example 1 

• Long-running simulations 
of building energy 
performance (mins to hrs) 

• RBFN surrogate uses 
population as training data 

• Filters offspring before 
evaluation with full 
simulation 

• Many similar examples 
Brownlee, A. E. and Wright, J. A. (2015) Constrained, mixed-integer and multi-
objective optimisation of building designs by NSGA-II with fitness approximation. 
Applied Soft Computing, vol.33, pp 114-126 



Example 2 

• Eternity II puzzle 
• Objective: maximise matched 

adjacent edges 
• Surrogate objectives: 

– Completed 2x2 squares 
– Completed 3x3 squares 
– Completed 4x4 squares 
– Tiles with all 4 edges matched 

• Search iterates over two stages: 
surrogate, then objective 

Tony Wauters, Wim Vancroonenburg and Greet Vanden Berghe. A Guide-and-
Observe Hyper-Heuristic Approach to the Eternity II Puzzle. J Math Model Algor 
(2012) 11:217–233 



Example 3 
Trap-5 

GA MFM-GA 

Evals 83421 70839 (surr.) 14520 (true) 

Run 
time 

1.44 s 24.6 s 
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• MFM-GA uses undirected 
PGM (Markov network) to 
approximate fitness 

• PGM initialised with 
dependencies between 5-
bit blocks in problem, 
coefficients estimated 
using randomly generated 
population 

• Fewer evals wrt GA, but 
more overhead 

A. E. I. Brownlee, O. Regnier-Coudert, J. A. W. McCall, and S. 
Massie. Using a Markov network as a surrogate fitness function in 
a genetic algorithm. IEEE CEC 2010. pp 4525-4532, Barcelona, 
Spain. 



Mining a surrogate model 

• Examine the surrogate model to gain 
insight into the problem 

• Model here shows where glass is preferred 
(blue) on the façade  
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Summary 
• “true” fitness not always suited to guiding search 

• Use surrogates to improve search efficiency 

• Static surrogates often used already! 

• More reading… 

– Yaochu Jin (2005). A comprehensive survey of fitness 
approximation in evolutionary computation. Soft 
Computing, 9(1):3-12. 

– Yaochu Jin (2011). Surrogate-assisted evolutionary 
computation: Recent advances and future challenges. 
Swarm & Evolutionary Computation 1(2):61-70. 

www.cs.stir.ac.uk/~sbr sbr@cs.stir.ac.uk 
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Class diagram 

 


